Home
Class 12
MATHS
Let P(A) = (7)/(13) , P(B) = (9)/(13) an...

Let `P(A) = (7)/(13) , P(B) = (9)/(13) and P (A cap B) = (4)/(13)` . Then `P (A | B) ` is equal to

A

`(6)/(13)`

B

`(4)/(13)`

C

`(4)/(9)`

D

`(5)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P(A | B) \), we can use the formula for conditional probability: \[ P(A | B) = \frac{P(A \cap B)}{P(B)} \] Given: - \( P(A) = \frac{7}{13} \) - \( P(B) = \frac{9}{13} \) - \( P(A \cap B) = \frac{4}{13} \) Now, we can substitute the values into the formula. ### Step 1: Substitute the values into the formula \[ P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{4}{13}}{\frac{9}{13}} \] ### Step 2: Simplify the fraction When dividing fractions, we multiply by the reciprocal of the denominator: \[ P(A | B) = \frac{4}{13} \times \frac{13}{9} \] ### Step 3: Cancel out the common terms The \( 13 \) in the numerator and denominator cancels out: \[ P(A | B) = \frac{4}{9} \] Thus, the final answer is: \[ P(A | B) = \frac{4}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P (A) = 7/3, P (B)= 9/13, "and" P(A cap B) = 4/13 , then find P (A/B)

If P(A)(7)/(13),P(B)=(9)/(13) and P(A nn B)=(4)/(13), find P((A)/(B))

If P(A)=(7)/(13)P(B)=(9)/(13) and P(A nn B)=(4)/(13) ,evaluate quad P(A|B)

If P(A)=7/13,P(B)=9/13 and P(AcapB)=4/13 , then P(A'/B) is equal to

If P(A)=(2)/(3), P(B)=(2)/(5) and P(A cup B)-P(A cap B)=(2)/(5) then what is P(A cap B) equal to?

If P(E)=(7)/(13),P(F)=(9)/(13) and P(E nn F)=(4)/(13) , then P(E//F) __________.