Home
Class 14
MATHS
If x^(4) +x^(2)y^(2)+y^(4)=21 , and x^(2...

If `x^(4) +x^(2)y^(2)+y^(4)=21 `, and `x^(2)+xy+y^(2)=3` then what is the value of 4xy?

A

12

B

4

C

`-8`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two equations given: 1. \( x^4 + x^2y^2 + y^4 = 21 \) (Equation 1) 2. \( x^2 + xy + y^2 = 3 \) (Equation 2) We need to find the value of \( 4xy \). ### Step 1: Use the identity for \( x^4 + y^4 \) We can use the identity: \[ x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \] From Equation 2, we can express \( x^2 + y^2 \) in terms of \( xy \): \[ x^2 + y^2 = (x^2 + xy + y^2) - xy = 3 - xy \] ### Step 2: Substitute \( x^2 + y^2 \) into the identity Now, substituting \( x^2 + y^2 \) into the identity: \[ x^4 + y^4 = (3 - xy)^2 - 2x^2y^2 \] ### Step 3: Expand and simplify Expanding the right-hand side: \[ (3 - xy)^2 = 9 - 6xy + x^2y^2 \] Thus, \[ x^4 + y^4 = 9 - 6xy + x^2y^2 - 2x^2y^2 = 9 - 6xy - x^2y^2 \] ### Step 4: Substitute back into Equation 1 Now, substituting this back into Equation 1: \[ 9 - 6xy - x^2y^2 + x^2y^2 = 21 \] This simplifies to: \[ 9 - 6xy = 21 \] ### Step 5: Solve for \( xy \) Rearranging gives: \[ -6xy = 21 - 9 \] \[ -6xy = 12 \] \[ xy = -2 \] ### Step 6: Find \( 4xy \) Now, we calculate \( 4xy \): \[ 4xy = 4 \times (-2) = -8 \] Thus, the value of \( 4xy \) is \( -8 \). ### Final Answer The value of \( 4xy \) is \( -8 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4)+x^(2)y^(2)+y^(4)=133 and x^(2)-xy+y^(2)=7, then what is the value of xy ?

If x^(4) + x^(2) y^(2) + y^(4) = 91 and x^(2) - xy + y^(2) = 13 , then what is the value of | x-y|?

If x^(2) - xy + y^(2) =2 and x^(4) + x^(2)y^(2) + y^(4) = 6 , then the value of (x^(2) + xy + y^(2) is :

If 5x^(2) -4xy +y^(2) -2x +1=0 then value of x+y is

If 5x^(2) + 4xy + y^(2) + 2x + 1= 0 then find the value of x, y