Home
Class 14
MATHS
If x^(2) - sqrt(7) x +1 =0 then (x^(3)+x...

If `x^(2) - sqrt(7) x +1 =0` then `(x^(3)+x^(-3))` =?

A

`10 sqrt(7)`

B

`4 sqrt(7)`

C

`7 sqrt(7)`

D

`3 sqrt(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - \sqrt{7}x + 1 = 0 \) and find the value of \( x^3 + x^{-3} \), we can follow these steps: ### Step 1: Solve for \( x + \frac{1}{x} \) Starting from the given equation: \[ x^2 - \sqrt{7}x + 1 = 0 \] We can rearrange it to isolate the \( \sqrt{7}x \) term: \[ x^2 + 1 = \sqrt{7}x \] Next, divide the entire equation by \( x \) (assuming \( x \neq 0 \)): \[ x + \frac{1}{x} = \sqrt{7} \] ### Step 2: Use the identity for \( x^3 + x^{-3} \) We know the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3\left( x + \frac{1}{x} \right) \] Substituting \( x + \frac{1}{x} = \sqrt{7} \) into the identity: \[ x^3 + \frac{1}{x^3} = \left( \sqrt{7} \right)^3 - 3\sqrt{7} \] ### Step 3: Calculate \( \left( \sqrt{7} \right)^3 \) Calculating \( \left( \sqrt{7} \right)^3 \): \[ \left( \sqrt{7} \right)^3 = 7\sqrt{7} \] ### Step 4: Substitute back into the equation Now substitute this back into the equation: \[ x^3 + \frac{1}{x^3} = 7\sqrt{7} - 3\sqrt{7} \] This simplifies to: \[ x^3 + \frac{1}{x^3} = (7 - 3)\sqrt{7} = 4\sqrt{7} \] ### Final Answer Thus, the value of \( x^3 + x^{-3} \) is: \[ \boxed{4\sqrt{7}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

If x=sqrt(3)-sqrt(2) then (1)/(x^(3))-x^(3)=

x^2 - (sqrt 7 + 1) x + sqrt 7 = 0

Complete the following activity to solve the quadratic equation sqrt(3) x^(2) +4x- 7 sqrt(3) = 0 by factorisation method : sqrt(3) x^(2) +4x- 7 sqrt(3) = 0 :. sqrt(3) x^(2) + square - 3x - 7 sqrt(3) = 0 :. x( sqrt(3) x + ) - sqrt(3) ( sqrt(3) x + 7) = 0 :. (" ") (x-sqrt(3))= 0 :. sqrt(3) x + 7 = 0 or square = 0 :. x = ( -7)/( sqrt(3)) or x = square :. (-7)/(sqrt(3)) and sqrt(3) are the roots of the equation.

x^2 - (sqrt 3 + 1) x + sqrt 3 = 0

If x = sqrt(7 - 4 sqrt(3)) , then x + (1)/(x) is equal to :

If x^(2)-2 sqrt(5)x+1=0 then which of the following is the value of x^(3)+(1)/(x^(3))?

If x=(1)/(2+sqrt(3)) of ,find the value 2x^(3)-7x^(2)-2x+1