Home
Class 14
MATHS
If x+y +z =10, xy +yz +zx =25 and xyz =1...

If x+y +z =10, xy +yz +zx =25 and xyz =100 then what is the value of `(x^(3)+y^(3) +z^(3))` ?

A

450

B

540

C

550

D

570

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 \) given the equations: 1. \( x + y + z = 10 \) 2. \( xy + yz + zx = 25 \) 3. \( xyz = 100 \) We can use the identity that relates the sum of cubes to the sums and products of the variables: \[ x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) + 3xyz \] ### Step 1: Calculate \( x^2 + y^2 + z^2 \) We can find \( x^2 + y^2 + z^2 \) using the formula: \[ x^2 + y^2 + z^2 = (x + y + z)^2 - 2(xy + yz + zx) \] Substituting the known values: \[ x^2 + y^2 + z^2 = (10)^2 - 2(25) = 100 - 50 = 50 \] ### Step 2: Substitute into the identity Now we can substitute \( x + y + z \), \( x^2 + y^2 + z^2 \), \( xy + yz + zx \), and \( xyz \) into the identity: \[ x^3 + y^3 + z^3 = (x + y + z)((x^2 + y^2 + z^2) - (xy + yz + zx)) + 3xyz \] Substituting the values we have: \[ x^3 + y^3 + z^3 = 10 \left(50 - 25\right) + 3 \cdot 100 \] ### Step 3: Simplify the expression Now we simplify the expression: \[ x^3 + y^3 + z^3 = 10 \cdot 25 + 300 = 250 + 300 = 550 \] ### Final Answer Thus, the value of \( x^3 + y^3 + z^3 \) is \( \boxed{550} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x + y + z) = 12, xy + yz + zx = 44 " and " xyz = 48 , then what is the value of x^(3) + y^(3) + z^(3) ?

If x+y+z=2, xy+yz+zx =-11 and xyz =-12, then what is the value of sqrt(x^3 + y^3 +z^3-2) ?

If x+y+z=6 and xy+yz +zx =11 then what is the vlaue of x^(3) +y^(3)+z^(3) -3xyz ?

If x+y+z = 2, xy+yz+zx = -11 and xyz = -12, then what is the value of sqrt(x^3+y^3+z^3-2) = ? यदि x+y+z = 2, xy+yz+zx = -11 है तथा xyz = -12 है, तो sqrt(x^3+y^3+z^3-2) का मान क्या होगा ?