Home
Class 14
MATHS
The value of (5^((1)/(4))-: (3)/(7)"of"...

The value of `(5^((1)/(4))-: (3)/(7)"of"(1)/(2)) -: (5(1)/(9)-7(7)/(8)-: 9 (9)/(20)) xx(11)/(21)+ (2-: 2 "of" (1)/(2)) ` is :

A

`(9)/(4)`

B

5

C

3

D

`(7)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((5^{(1/4)} \div (3/7) \text{ of } (1/2)) \div (5^{(1/9)} - 7^{(7/8)} \div 9^{(9/20)}) \times (11/21) + (2 \div 2 \text{ of } (1/2))\), we will follow these steps: ### Step 1: Simplify the components - Convert \(5^{(1/4)}\) to a fraction: \[ 5^{(1/4)} = \frac{21}{4} \quad \text{(since } 5 \times 4 = 20 + 1 = 21\text{)} \] ### Step 2: Calculate \(3/7 \text{ of } (1/2)\) - The term \((3/7) \text{ of } (1/2)\) means multiplying: \[ (3/7) \times (1/2) = \frac{3}{14} \] ### Step 3: Calculate the first part of the expression - Now we have: \[ \frac{21}{4} \div \frac{3}{14} \] - Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{21}{4} \times \frac{14}{3} = \frac{21 \times 14}{4 \times 3} = \frac{294}{12} = \frac{49}{2} \quad \text{(after simplification)} \] ### Step 4: Simplify the second part of the expression - Calculate \(5^{(1/9)}\): \[ 5^{(1/9)} = \frac{46}{9} \quad \text{(since } 5 \times 9 = 45 + 1 = 46\text{)} \] - Calculate \(7^{(7/8)}\): \[ 7^{(7/8)} = \frac{63}{8} \quad \text{(since } 7 \times 8 = 56 + 7 = 63\text{)} \] - Calculate \(9^{(9/20)}\): \[ 9^{(9/20)} = \frac{189}{20} \quad \text{(since } 9 \times 20 = 180 + 9 = 189\text{)} \] - Now compute: \[ \frac{63}{8} \div \frac{189}{20} = \frac{63}{8} \times \frac{20}{189} = \frac{1260}{1512} = \frac{5}{6} \quad \text{(after simplification)} \] ### Step 5: Combine the results - Now we have: \[ \frac{49}{2} \div \left(\frac{46}{9} - \frac{5}{6}\right) \] - Find a common denominator for \(\frac{46}{9}\) and \(\frac{5}{6}\): \[ \text{LCM of 9 and 6 is 18.} \] - Convert: \[ \frac{46}{9} = \frac{92}{18}, \quad \frac{5}{6} = \frac{15}{18} \] - Subtract: \[ \frac{92}{18} - \frac{15}{18} = \frac{77}{18} \] ### Step 6: Final calculation - Now we compute: \[ \frac{49}{2} \div \frac{77}{18} = \frac{49}{2} \times \frac{18}{77} = \frac{882}{154} = \frac{63}{11} \quad \text{(after simplification)} \] - Multiply by \(\frac{11}{21}\): \[ \frac{63}{11} \times \frac{11}{21} = \frac{63}{21} = 3 \] ### Step 7: Add the last part - Calculate \(2 \div 2 \text{ of } (1/2)\): \[ 2 \div 1 = 2 \] - Finally, add: \[ 3 + 2 = 5 \] ### Final Answer The value of the expression is \(5\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

The value of (5 (1)/(9) - 7 (7)/(8)div9 (9)/(20)) xx (9)/(11)- (5(1)/(4) div (3)/(7) " of " (1)/(4) xx (2)/(7)) div 4 (2)/(3) + 1 (3)/(4) is (a) 2(1)/(4) (b) 2(1)/(3) (c) 3(1)/(4) (d) 4(1)/(2)

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of (5 div 2 of 1/2)div (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21 is: (5 div 2 of 1/2)div (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21 का मान ज्ञात करे।

The value of (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21-(5 div 2 of 1/2) is: (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21-(5 div 2 of 1/2) का मान ज्ञात करे।

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

9-1(2)/(9) of 3(3)/(11)-:5(1)/(7) of (7)/(9)=?(5)/(4)(b)8(c)8(32)/(81) (d) 9