Home
Class 14
MATHS
The value of ((2.8)^(3)+(2.2)^(3))/((28)...

The value of `((2.8)^(3)+(2.2)^(3))/((28)^(2)-28xx22+484` is:

A

`0.02`

B

`0.05`

C

`0.01`

D

`0.5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \(\frac{(2.8)^3 + (2.2)^3}{(28)^2 - 28 \times 22 + 484}\), we will follow these steps: ### Step 1: Calculate the numerator The numerator is \((2.8)^3 + (2.2)^3\). Using the formula for the sum of cubes, \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\), where \(a = 2.8\) and \(b = 2.2\): 1. Calculate \(a + b\): \[ 2.8 + 2.2 = 5.0 \] 2. Calculate \(a^2\): \[ (2.8)^2 = 7.84 \] 3. Calculate \(b^2\): \[ (2.2)^2 = 4.84 \] 4. Calculate \(ab\): \[ 2.8 \times 2.2 = 6.16 \] 5. Now substitute into the formula: \[ a^2 - ab + b^2 = 7.84 - 6.16 + 4.84 = 6.52 \] 6. Therefore, the numerator becomes: \[ (2.8)^3 + (2.2)^3 = (5.0)(6.52) = 32.6 \] ### Step 2: Calculate the denominator The denominator is \((28)^2 - 28 \times 22 + 484\). 1. Calculate \((28)^2\): \[ (28)^2 = 784 \] 2. Calculate \(28 \times 22\): \[ 28 \times 22 = 616 \] 3. Now substitute into the denominator: \[ 784 - 616 + 484 = 784 - 616 + 484 = 652 \] ### Step 3: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{32.6}{652} \] ### Step 4: Simplify the fraction To simplify \(\frac{32.6}{652}\): 1. Divide both the numerator and denominator by 32.6: \[ \frac{32.6 \div 32.6}{652 \div 32.6} = \frac{1}{20} \] 2. Convert \(\frac{1}{20}\) to decimal: \[ \frac{1}{20} = 0.05 \] ### Final Answer The value of the expression is \(0.05\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of {(3^(2003))/(28)} is

If x=1+sqrt""2+sqrt""3 , then the value of 2x^(4)-8x^(3)-5x^(2)+26x-28 is :

(2)/(3)x^2-(17)/(3)x-28

(37^(3)-28^(3))/(37^(2)+37.28+28^(2))=

((4)/(9))^(2)-:((28)/(27))^(3)