Home
Class 14
MATHS
If a - b = 5 and a^(2)+b^(2)=45 then the...

If a - b = 5 and `a^(2)+b^(2)=45` then the value of ab is:

A

25

B

10

C

15

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ab \) given the equations \( a - b = 5 \) and \( a^2 + b^2 = 45 \). ### Step-by-Step Solution: 1. **Start with the given equations:** \[ a - b = 5 \quad \text{(1)} \] \[ a^2 + b^2 = 45 \quad \text{(2)} \] 2. **Square equation (1):** \[ (a - b)^2 = 5^2 \] Expanding the left side: \[ a^2 - 2ab + b^2 = 25 \quad \text{(3)} \] 3. **Substitute \( a^2 + b^2 \) from equation (2) into equation (3):** From equation (2), we know: \[ a^2 + b^2 = 45 \] Substitute this into equation (3): \[ 45 - 2ab = 25 \] 4. **Rearranging the equation to isolate \( ab \):** \[ -2ab = 25 - 45 \] \[ -2ab = -20 \] Dividing both sides by -2: \[ ab = 10 \] 5. **Final answer:** The value of \( ab \) is: \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b = 9 and a^2 + b^2 = 53 , then find the value of ab

If a^2 + b^2 = 53 and ab = 14, then find the value of a +b

If a * b = a^(2) + b^(2) and a.b = a^(2) - b^(2) , then the value of (5 * 2).25 is

If a * b= a^(2) + ab + b^(2) , then find the value of 2 * 3?

If a+b=5 and a-b=1 then find the value of 8ab(a^2+b^2)