Home
Class 14
MATHS
If a + b + c = 9 and ab + bc + ca = 18, ...

If a + b + c = 9 and ab + bc + ca = 18, then the value of
`a^(3)+b^(3)+c^(3)`+ 3abc is :

A

243

B

254

C

234

D

244

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 + 3abc \) given the equations \( a + b + c = 9 \) and \( ab + bc + ca = 18 \). ### Step 1: Use the identity for the sum of cubes We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] From this, we can rearrange it to find: \[ a^3 + b^3 + c^3 + 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) + 3abc \] ### Step 2: Calculate \( a^2 + b^2 + c^2 \) We know \( a + b + c = 9 \). We can find \( a^2 + b^2 + c^2 \) using the formula: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc) \] Substituting the known values: \[ a^2 + b^2 + c^2 = 9^2 - 2 \cdot 18 = 81 - 36 = 45 \] ### Step 3: Substitute into the identity Now we substitute \( a + b + c \) and \( a^2 + b^2 + c^2 \) into the rearranged identity: \[ a^3 + b^3 + c^3 + 3abc = (9)(45 - 18) + 3abc \] Calculating \( 45 - 18 \): \[ 45 - 18 = 27 \] Thus, \[ a^3 + b^3 + c^3 + 3abc = 9 \cdot 27 + 3abc = 243 + 3abc \] ### Step 4: Find \( abc \) To find \( abc \), we can assume \( c = 0 \) (as indicated in the video transcript). Then we have: \[ a + b = 9 \quad \text{and} \quad ab = 18 \] Let \( a \) and \( b \) be the roots of the quadratic equation \( x^2 - (a+b)x + ab = 0 \): \[ x^2 - 9x + 18 = 0 \] Using the quadratic formula: \[ x = \frac{9 \pm \sqrt{9^2 - 4 \cdot 1 \cdot 18}}{2 \cdot 1} = \frac{9 \pm \sqrt{81 - 72}}{2} = \frac{9 \pm 3}{2} \] Thus, the roots are: \[ x = \frac{12}{2} = 6 \quad \text{and} \quad x = \frac{6}{2} = 3 \] So, \( a = 6 \) and \( b = 3 \) (or vice versa), and since \( c = 0 \), we have \( abc = 6 \cdot 3 \cdot 0 = 0 \). ### Step 5: Final calculation Now substituting \( abc = 0 \) back into our equation: \[ a^3 + b^3 + c^3 + 3abc = 243 + 3 \cdot 0 = 243 \] Thus, the final answer is: \[ \boxed{243} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a +b + c = 19, ab + bc + ca = 120 then what is the value of a^3 + b^3 + c^3 - 3abc?