Home
Class 14
MATHS
The value of (2)/(3)div(3)/(1)" of "(4)/...

The value of `(2)/(3)div(3)/(1)" of "(4)/(9)-(4)/(5)xx1 (1)/(9)div(8)/(15)+(3)/(4)div(1)/(2)` is :

A

A)`(49)/(12)`

B

B)`(17)/(9)`

C

C)`(29)/(6)`

D

D)`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{2}{3} \div \frac{3}{1} \text{ of } \frac{4}{9} - \frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15} + \frac{3}{4} \div \frac{1}{2} \), we will follow the order of operations (BODMAS/BIDMAS rules). ### Step-by-step Solution: 1. **Convert Mixed Numbers to Improper Fractions**: \[ 1 \frac{1}{9} = \frac{10}{9} \] So the expression becomes: \[ \frac{2}{3} \div \frac{3}{1} \text{ of } \frac{4}{9} - \frac{4}{5} \times \frac{10}{9} \div \frac{8}{15} + \frac{3}{4} \div \frac{1}{2} \] 2. **Calculate "of" Operation**: The "of" operation means multiplication: \[ \frac{3}{1} \text{ of } \frac{4}{9} = \frac{3 \times 4}{1 \times 9} = \frac{12}{9} = \frac{4}{3} \] Now the expression is: \[ \frac{2}{3} \div \frac{4}{3} - \frac{4}{5} \times \frac{10}{9} \div \frac{8}{15} + \frac{3}{4} \div \frac{1}{2} \] 3. **Convert Division to Multiplication**: \[ \frac{2}{3} \div \frac{4}{3} = \frac{2}{3} \times \frac{3}{4} = \frac{2 \times 3}{3 \times 4} = \frac{6}{12} = \frac{1}{2} \] Now the expression is: \[ \frac{1}{2} - \frac{4}{5} \times \frac{10}{9} \div \frac{8}{15} + \frac{3}{4} \div \frac{1}{2} \] 4. **Calculate the Second Term**: First, calculate \( \frac{4}{5} \times \frac{10}{9} \): \[ \frac{4 \times 10}{5 \times 9} = \frac{40}{45} = \frac{8}{9} \] Now convert the division: \[ \frac{8}{9} \div \frac{8}{15} = \frac{8}{9} \times \frac{15}{8} = \frac{15}{9} = \frac{5}{3} \] Now the expression is: \[ \frac{1}{2} - \frac{5}{3} + \frac{3}{4} \div \frac{1}{2} \] 5. **Calculate the Third Term**: \[ \frac{3}{4} \div \frac{1}{2} = \frac{3}{4} \times 2 = \frac{3 \times 2}{4} = \frac{6}{4} = \frac{3}{2} \] Now the expression is: \[ \frac{1}{2} - \frac{5}{3} + \frac{3}{2} \] 6. **Combine the Terms**: To combine these fractions, we need a common denominator. The least common multiple of 2 and 3 is 6. - Convert \( \frac{1}{2} \) to sixths: \( \frac{1}{2} = \frac{3}{6} \) - Convert \( \frac{5}{3} \) to sixths: \( \frac{5}{3} = \frac{10}{6} \) - Convert \( \frac{3}{2} \) to sixths: \( \frac{3}{2} = \frac{9}{6} \) Now we can combine: \[ \frac{3}{6} - \frac{10}{6} + \frac{9}{6} = \frac{3 - 10 + 9}{6} = \frac{2}{6} = \frac{1}{3} \] ### Final Answer: The value of the expression is \( \frac{1}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of 15(7)/(10)+3(1)/(5) of [5(1)/(8)-(2(1)/(4)+(5)/(3)xx(15)/(14)div(10)/(9) of (3)/(14))] is :

(5)/(8)xx2(3)/(5) div (4)/(9)=?

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

(5)/(6)div(6)/(7)xx?-(8)/(9)div1(3)/(5)+(3)/(4)xx3(1)/(3)=2(7)/(9)

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =