Home
Class 14
MATHS
What is the value of ( tan^(2) 25^(@) )/...

What is the value of `( tan^(2) 25^(@) )/( cosec^(2) 65^(@) ) + ( cot^(2) 25^(@) ) /( sec^(2) 65^(@) ) + 2 tan 20^(@) tan 45^(@) tan 70^(@)?`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will use trigonometric identities and properties. ### Step 1: Rewrite the Expression The expression we need to evaluate is: \[ \frac{\tan^2 25^\circ}{\csc^2 65^\circ} + \frac{\cot^2 25^\circ}{\sec^2 65^\circ} + 2 \tan 20^\circ \tan 45^\circ \tan 70^\circ \] ### Step 2: Use Trigonometric Identities We know that: - \(\csc^2 \theta = \sec^2 (90^\circ - \theta)\) - \(\sec^2 \theta = \csc^2 (90^\circ - \theta)\) Using these identities, we can rewrite: - \(\csc^2 65^\circ = \sec^2 25^\circ\) (since \(65^\circ = 90^\circ - 25^\circ\)) - \(\sec^2 65^\circ = \csc^2 25^\circ\) ### Step 3: Substitute into the Expression Now substituting these into the expression: \[ \frac{\tan^2 25^\circ}{\sec^2 25^\circ} + \frac{\cot^2 25^\circ}{\csc^2 25^\circ} + 2 \tan 20^\circ \tan 45^\circ \tan 70^\circ \] ### Step 4: Simplify Each Term 1. For the first term: \[ \frac{\tan^2 25^\circ}{\sec^2 25^\circ} = \tan^2 25^\circ \cdot \cos^2 25^\circ = \sin^2 25^\circ \] 2. For the second term: \[ \frac{\cot^2 25^\circ}{\csc^2 25^\circ} = \cot^2 25^\circ \cdot \sin^2 25^\circ = \cos^2 25^\circ \] 3. The third term simplifies as follows: \[ \tan 45^\circ = 1 \Rightarrow 2 \tan 20^\circ \cdot 1 \cdot \tan 70^\circ = 2 \tan 20^\circ \tan 70^\circ \] Using the identity \(\tan(90^\circ - \theta) = \cot \theta\), we have: \[ \tan 70^\circ = \cot 20^\circ \Rightarrow 2 \tan 20^\circ \tan 70^\circ = 2 \tan 20^\circ \cdot \cot 20^\circ = 2 \] ### Step 5: Combine the Results Now we can combine all the results: \[ \sin^2 25^\circ + \cos^2 25^\circ + 2 \] Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus: \[ 1 + 2 = 3 \] ### Final Answer The final value of the expression is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (tan^(2)25^(@))/(cosec^(2)65^(@))+(cot^(2)25^(@))/(sec^(2)65^(@))+tan20^(@)45^(@)tan70^(@) ?

Find the value of (tan25^(@))/(cot65^(@)) .

Find the value of (tan25^(@))/(cot65^(@)) .

What is the value of cosec (65^(@) + theta) - sec(25^(@) - theta) + tan^(2) 20^(@) - cosec^(2) 70^(@) ?

Find tan^(2)25^(@)-cot^(2)65^(@)

What is the value of "cosec"^(2) 68^(@) + sec^(2)56^(@) - cot^(2)34^(@) - tan^(2)22^(@) ?

tan65 ^ (@) - tan20 ^ (@) - tan65 ^ (@) tan20 ^ (@) =

The value of 2tan 45^(@)- sec 60^(@)+ cosec 30^(@) is

What is the value of sin^(3) 60^(@) cot 30^(@) - 2 sec^(2) 45^(@) + 3 cos 60^(@) tan 45^(@) - tan^(2) 60^(@) ?

Find the value of (sin25^(@))/(cos65^(@))+(tan23^(@))/(cot67^(@))