Home
Class 14
MATHS
If x^(2)- 2sqrt(10)x+1=0 then what is th...

If `x^(2)- 2sqrt(10)x+1=0` then what is the value of `x- (1)/(x)?`

A

A)4

B

B)6

C

C)3

D

D)5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 2\sqrt{10}x + 1 = 0 \) and find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ x^2 - 2\sqrt{10}x + 1 = 0 \] We can use the quadratic formula, which is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2\sqrt{10} \), and \( c = 1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( b^2 - 4ac \): \[ b^2 = (-2\sqrt{10})^2 = 4 \cdot 10 = 40 \] \[ 4ac = 4 \cdot 1 \cdot 1 = 4 \] Thus, the discriminant is: \[ b^2 - 4ac = 40 - 4 = 36 \] ### Step 3: Find the roots Now substituting back into the quadratic formula: \[ x = \frac{2\sqrt{10} \pm \sqrt{36}}{2 \cdot 1} = \frac{2\sqrt{10} \pm 6}{2} \] This simplifies to: \[ x = \sqrt{10} + 3 \quad \text{or} \quad x = \sqrt{10} - 3 \] ### Step 4: Calculate \( x + \frac{1}{x} \) Next, we need to find \( x + \frac{1}{x} \). We can use the relationship: \[ x + \frac{1}{x} = 2\sqrt{10} \] This is derived from the original equation by dividing through by \( x \): \[ x - 2\sqrt{10} + \frac{1}{x} = 0 \implies x + \frac{1}{x} = 2\sqrt{10} \] ### Step 5: Find \( x - \frac{1}{x} \) Using the identity: \[ x - \frac{1}{x} = \sqrt{(x + \frac{1}{x})^2 - 4} \] Substituting \( x + \frac{1}{x} = 2\sqrt{10} \): \[ x - \frac{1}{x} = \sqrt{(2\sqrt{10})^2 - 4} = \sqrt{40 - 4} = \sqrt{36} = 6 \] ### Final Answer Thus, the value of \( x - \frac{1}{x} \) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2-2 sqrt5 x+1=0 , then what is the value of x^5+1/x^5 ? यदि x^2-2 sqrt5 x+1=0 है, तो x^5+1/x^5 का मान क्या होगा ?

If x=6+2sqrt(6), then what is the value of sqrt(x-1)+(1)/(sqrt(x-1))