Home
Class 14
MATHS
If tan theta= (2)/(3) then what is the v...

If `tan theta= (2)/(3)` then what is the value of `(15 sin^(2) theta- 3 cos^(2)theta)/(5 sin^(2) theta+ 3 cos^(2)theta)`?

A

`(33)//(32)`

B

`(11)//(29)`

C

`(33)//(47)`

D

`(33)//(45)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{15 \sin^2 \theta - 3 \cos^2 \theta}{5 \sin^2 \theta + 3 \cos^2 \theta} \] given that \(\tan \theta = \frac{2}{3}\). ### Step 1: Find \(\sin^2 \theta\) and \(\cos^2 \theta\) Since \(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2}{3}\), we can represent \(\sin \theta\) and \(\cos \theta\) in terms of a right triangle. Let: - Opposite side = 2 - Adjacent side = 3 Using the Pythagorean theorem, we find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \] Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{2}{\sqrt{13}}, \quad \cos \theta = \frac{3}{\sqrt{13}} \] Now, squaring both: \[ \sin^2 \theta = \left(\frac{2}{\sqrt{13}}\right)^2 = \frac{4}{13}, \quad \cos^2 \theta = \left(\frac{3}{\sqrt{13}}\right)^2 = \frac{9}{13} \] ### Step 2: Substitute \(\sin^2 \theta\) and \(\cos^2 \theta\) into the expression Now substitute \(\sin^2 \theta\) and \(\cos^2 \theta\) into the expression: \[ \frac{15 \left(\frac{4}{13}\right) - 3 \left(\frac{9}{13}\right)}{5 \left(\frac{4}{13}\right) + 3 \left(\frac{9}{13}\right)} \] ### Step 3: Simplify the numerator and denominator **Numerator:** \[ 15 \cdot \frac{4}{13} - 3 \cdot \frac{9}{13} = \frac{60}{13} - \frac{27}{13} = \frac{60 - 27}{13} = \frac{33}{13} \] **Denominator:** \[ 5 \cdot \frac{4}{13} + 3 \cdot \frac{9}{13} = \frac{20}{13} + \frac{27}{13} = \frac{20 + 27}{13} = \frac{47}{13} \] ### Step 4: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{\frac{33}{13}}{\frac{47}{13}} = \frac{33}{47} \] ### Final Answer Thus, the value of the expression is: \[ \frac{33}{47} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5 tan theta = 3, then what is the value of ((5 sin theta - 3 cos theta)/(4 sin theta + 3 cos theta)) ?

If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?

If tan theta = (5)/(4) , then the value of ((3 sin theta + 4 cos theta)/(3 sin theta - 4 cos theta))^(2) is

If tan theta = 4/3 ,then the value of (3 sin theta + 2cos theta)/(3 sin theta - 2 cos theta) is

If tan theta=(12)/(13) then value of (2sin theta cos theta)/(cos^(2)theta-sin^(2)theta) is