Home
Class 14
MATHS
What is the simplefied value of (7)/(sec...

What is the simplefied value of `(7)/(sec^(2)theta)+ (3)/(1+cot^(2)theta)+ 4sin^(2) theta`?

A

3

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{7}{\sec^2 \theta} + \frac{3}{1 + \cot^2 \theta} + 4 \sin^2 \theta\), we will follow these steps: ### Step 1: Rewrite \(\sec^2 \theta\) and \(\cot^2 \theta\) Recall the trigonometric identities: - \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\) - \(1 + \cot^2 \theta = \csc^2 \theta = \frac{1}{\sin^2 \theta}\) Using these identities, we can rewrite the terms in the expression. ### Step 2: Substitute the identities into the expression Substituting the identities into the expression gives us: \[ \frac{7}{\sec^2 \theta} = 7 \cos^2 \theta \] \[ \frac{3}{1 + \cot^2 \theta} = 3 \sin^2 \theta \] So, the expression becomes: \[ 7 \cos^2 \theta + 3 \sin^2 \theta + 4 \sin^2 \theta \] ### Step 3: Combine like terms Now, combine the terms involving \(\sin^2 \theta\): \[ 7 \cos^2 \theta + (3 \sin^2 \theta + 4 \sin^2 \theta) = 7 \cos^2 \theta + 7 \sin^2 \theta \] ### Step 4: Use the Pythagorean identity Using the Pythagorean identity, we know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus, we can replace \(\cos^2 \theta + \sin^2 \theta\) with 1: \[ 7 (\cos^2 \theta + \sin^2 \theta) = 7 \cdot 1 = 7 \] ### Final Answer The simplified value of the expression is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The numerical value of (5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin^(2)theta is :

The numerical value of 5/(sec ^2 theta) + 2/(1 + cot^2 theta) + 3 sin^2 theta is

The numerical value of (1)/(1+cot^(2)theta)+(3)/(1+tan^(2)theta)+2 sin^(2)theta will be

Find the value of (sec^(2)theta-1).cot^(2)theta

What is the value of cot^(2) theta-1/(sin^(2) theta) ?

The numerical value of 1/(1+cot^2 theta) + (3)/(1 + tan^2 theta) + 2 sin^2 theta will be

What is the value of (1+cot^(2)theta)sin^(2)theta

What is the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-cos ec^(2)theta)?

What is the least value of tan^(2)theta+cot^(2)theta+sin^(2)theta+cos^(2)theta+sec^(2)theta+cosec^(2)theta

If (1/(1+cosec theta ) - 1/(1-cosec theta ))cos theta= 2 , 0^circ lt theta lt 90^circ , then the value of sin^(2) theta + cot^(2) theta + sec^(2) theta is: यदि (1/(1+cosec theta ) - 1/(1-cosec theta ))cos theta= 2 , 0^circ lt theta lt 90^circ , है,तो sin^(2) theta + cot^(2) theta + sec^(2) theta का मान हैः