Home
Class 12
MATHS
If z=a+ib and |z-2|=|2z-1|prove that a^2...

If z=a+ib and |z-2|=|2z-1|prove that `a^2-b^2=1`

Text Solution

AI Generated Solution

To solve the problem, we start with the given complex number \( z = a + ib \) and the condition \( |z - 2| = |2z - 1| \). ### Step 1: Express the given condition in terms of \( a \) and \( b \) We can rewrite the expressions inside the absolute values: - \( z - 2 = (a - 2) + ib \) - \( 2z - 1 = 2(a + ib) - 1 = (2a - 1) + 2ib \) ### Step 2: Set up the equation using the modulus ...
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY OF TWO DIMENSIONS (CONIC SECTION)

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|110 Videos
  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) two different complex numbers and |z_(2)|=1 then prove that |(z_(2)-z_(1))/(1-bar(z)_(1)z_(2))|=1

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

If |2z-1|=|z-2| prove that |z|=1 where z is a complex

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If z_(1) = (1+i) and z_(2) = (-2 + 4i) , prove that Im ((z_(1)z_(2))/(bar(z)_(1)))=2 .

If complex numbers z_(1)z_(2) and z_(3) are such that |z_(1)| = |z_(2)| = |z_(3)| , then prove that arg((z_(2))/(z_(1)) = arg ((z_(2) - z_(3))/(z_(1) - z_(3)))^(2)

If z=a+ib and Z=A+iB then show thatif z=(i(Z+1))/(z-1) then a^(2)+b^(2)-a=((A^(2)+B^(2)+2A-2B+1)/((A-1)^(2)+B^(2)))

Let z_(1),z_(2) be complex numbers with |z_(1)|=|z_(2)|=1 prove that |z_(1)+1|+|z_(2)+1|+|z_(1)z_(2)+1|<=2

For any two complex numbers z_(1) and z_(2) prove that: |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|backslash z_(2)|^(2)+2Rebar(z)_(1)z_(2)