Home
Class 12
MATHS
If (loga)/(b-c) = (logb)/(c-a) = (logc)...

If `(loga)/(b-c) = (logb)/(c-a) = (logc)/(a-b)`, then prove that `a^(a)b^(b)c^(c)=1`.

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|49 Videos
  • MATRIX

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|46 Videos

Similar Questions

Explore conceptually related problems

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that a^(b+c)*b^(c+a)*c^(a+b)=1

If (Ina)/((b-c)) =(Inb)/((c-a))=(Inc)/((a-b)) ,Prove that a^(b+c).b^(c+a).c^(a+b)=1

If (Ina)/((b-c))=(Inb)/((c-a))=(Inc)/((a-b)), prove that a^(b+c)*b^(c+a)*c^(a+b)=1a^(b+c)+b^(c+a)+c^(a+b)>=3

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a^a.b^b.c^c=1

Prove that A^(c)-B^(c)=B-A .

(c) If (a)/(b)=(b)/(c) ,prove that (a+b+c)(a-b+c)=a^(2)+b^(2)+c^(2)

If (a)/(b+c),(b)/(c+a),(c)/(a+b) are in A.P.and a+b+c!=0 prove that (1)/(b+c),(1)/(c+a),(1)/(a+b) are in A.P.