Home
Class 12
MATHS
Prove that logesqrt((1+x)/(1-x))=x+(x^3)...

Prove that `log_esqrt((1+x)/(1-x))=x+(x^3)/3+(x^5)/5+(x^7)/7+....`

Text Solution

Verified by Experts

`x=-1 or 5`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|49 Videos
  • MATRIX

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|46 Videos

Similar Questions

Explore conceptually related problems

Show that log((1+x)/(1-x))=2{x+x^3/3+x^5/5+...}

(2-7x)/(1-5x)=(3+7x)/(4+5x)

(2-7x)/(1-5x)=(3+7x)/(4+5x)

Prove that :log_(e)((x+1)/(x))=2[(1)/((2x+1))+(1)/(3(2x+1)^(3))+(1)/(5(2x+1)^(5))+...]

2((x-1)/(x+3))-7((x+3)/(x-1))=5

log_((1)/(5))(2x^(2)+7x+7)=0

Prove that (2^(log_(2)(1)/(4)x)-3^(log_(27)(x^(2)+1)^(3))-2x>)/(7_(-x-1)^(4log_(49)x))0

Prove that (2^(log_(2^(1//4))x)-3^(log_(27)(x^(2)+1)^(3))-2x)/(7^(4log_(49)x)-x-1)gt0,AAx in(0,oo) .

Sum to infnite terms if |x|<1:1/((1-x)(1-x^3))+x^2/((1-x^3)(1-x^5))+x^4/((1-x^5)(1-x^7))+... .

((5x+3)-(4x-2))/((5x+3)+(x-1))=(7)/(4)