Home
Class 12
MATHS
Find the product of [(2,1),(3,2),(-1,1)]...

Find the product of `[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`

Text Solution

AI Generated Solution

To find the product of the matrices \(\begin{pmatrix} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \end{pmatrix}\), we will follow the matrix multiplication rules. ### Step 1: Verify Dimensions The first matrix is \(3 \times 2\) (3 rows and 2 columns) and the second matrix is \(2 \times 3\) (2 rows and 3 columns). Since the number of columns in the first matrix (2) is equal to the number of rows in the second matrix (2), we can multiply these matrices. The resulting matrix will have dimensions \(3 \times 3\). ### Step 2: Set Up the Result Matrix We will denote the resulting matrix as \(C\), which will be a \(3 \times 3\) matrix: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|29 Videos
  • METHODS OF INTEGRATION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|106 Videos

Similar Questions

Explore conceptually related problems

Find the product (3)^(1/3)xx(2)^(1/6)

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

Find the rank of A=[[-2,-1,-3,-1],[1,2,3,-1],[1,0,1,1],[0,1,1,-1]]

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

Find the rank of [[2,-1,1,4],[1,0,1,5],[4,-1,3,1],[3,-1,2,9]]

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

Find the product of ((1)/(2)x^(2)-(1)/(3)y^(2))and((1)/(2)x^(2)+(1)/(3)y^(2))

Find the product of the determinants : |{:(1,2,1),(-1,0,0),(1,0,1):}|xx|{:(1,-1,0),(0,1,2),(2,-1,1):}|

8.Find the rank of the matrix [[0,1,-3,-1],[1,0,1,1],[3,1,0,2],[1,1,-2,0]]

MAHAVEER PUBLICATION-MATRIX-QUESTION BANK
  1. If [(a+b ,2),(5,ab)]=[(6,2),(5,8)], Find the values of a and b.

    Text Solution

    |

  2. Find x,y,a and b if[(2x+3y,a+b,8),(1,4x+y,3a-4b)]=[(7,1,8),(1,9,10)].

    Text Solution

    |

  3. Find the number of all possible matrices of order 3xx3 with each entry...

    Text Solution

    |

  4. Let,A=[(2,4),(3,2)],B=[(1,3),(-2,5)],C[(-2,5),(3,4)] Find each of the ...

    Text Solution

    |

  5. Let,A=[(2,4),(3,2)],B=[(1,3),(-2,5)],C[(-2,5),(3,4)] Find each of the ...

    Text Solution

    |

  6. Let,A=[(2,4),(3,2)],B=[(1,3),(-2,5)],C[(-2,5),(3,4)] Find AB

    Text Solution

    |

  7. Let,A=[(2,4),(3,2)],B=[(1,3),(-2,5)],C[(-2,5),(3,4)] Find BA

    Text Solution

    |

  8. Find the product of [(a,b),(-b,a)][(a,-b),(b,a)]

    Text Solution

    |

  9. Find the product of [(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]

    Text Solution

    |

  10. Find the product of [(2,3,4),(3,4,5),(4,5,6)][(1,-3),(0,2),(3,0)]

    Text Solution

    |

  11. Find X and Y ,ifX+Y =[(7,0),(2,5)] and X-Y= [(3,0),(0,3)]

    Text Solution

    |

  12. Find X and Y ,if 2X + 3Y = [(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

    Text Solution

    |

  13. Find ,A^2-5A+6l, ifA = [(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. Find the transpose of matrices [(1,3,7),(4,2,3)]

    Text Solution

    |

  15. Find the transpose of matrices : [(3),(0),(5)]

    Text Solution

    |

  16. If A^T=[(-2,3),(1,2)] and B =[(-1,0),(1,2)],then find (A +2B)^T.

    Text Solution

    |

  17. Find the value of x if A+A^T=I, where A=[(cos x,- sinx),(sinx, cosx)]...

    Text Solution

    |

  18. If AB are symmetric matrices of same order then show that AB-BA is a s...

    Text Solution

    |

  19. Express matrices as the sum of a symmetric and skew symmetric matrix [...

    Text Solution

    |

  20. Express matrices as the sum of a symmetric and skew symmetric matrix [...

    Text Solution

    |