Home
Class 12
MATHS
Prove that 2 "cos" pi/16=sqrt(2+sqrt(2+s...

Prove that `2 "cos" pi/16=sqrt(2+sqrt(2+sqrt2))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|55 Videos
  • VECTOR

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|112 Videos

Similar Questions

Explore conceptually related problems

Prove that tan(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that: tan(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that sin ((23pi)/24) = sqrt((2 sqrt2 - sqrt3 -1)/(4 sqrt2))

Show that tan pi/16 = sqrt(4 +2 sqrt2) - (sqrt2+1) .

Prove that: cot(pi)/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Use the principle of mathematical induction to prove that for all n in N sqrt(2+sqrt(2+sqrt2+...+...+sqrt2))=2cos ((pi)/(2^(n+1))) When the LHS contains n radical signs.

Prove that: sqrt(2+sqrt(2+sqrt(2+2cos8A)))=2cosA

Prove using induction or otherwise that 2 cos (theta)/(2^(n))=sqrt(2+sqrt(2+sqrt(2…sqrt(2+2cos theta)))) where R.H.S contains n radical signs and 0 in (0, pi)

tan backslash(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)