Home
Class 12
MATHS
Find the principal value of tan^(-1)(-sq...

Find the principal value of `tan^(-1)(-sqrt3).`

Text Solution

Verified by Experts

Let `tan^(-1)(-sqrt3)=theta`.Then ,`tan theta=-sqrt3= -tan pi-3 =tan( - pi/3)`
We know that the range of the principal value branch of `tan^(-1) is (- pi/2, pi/2)` and `tan (- pi/3)= -sqrt3`.
Therefore, principal value of `tan^(-1)(-sqrt3)` is `- pi/3.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|48 Videos
  • LIMITS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|49 Videos

Similar Questions

Explore conceptually related problems

Find the principal value of tan^(-1)(-sqrt(3))

Find the principal value of tan^(-1)(1)

Find the principal value of tan^(-1)(-1/sqrt3) .

Find the principal value of cot^(-1)(-sqrt3)

Find the principal value of : tan^(-1) sqrt(3)

Find the principal value of sin^(-1)(-sqrt3/2)

Find the principal value of tan^(-1)sqrt(3)-sec^(-1)(-2)

Find the principal value of sec^(-1)(2/sqrt3)

Find the principal value of sin^(-1)(sqrt3/2) .

Find the principal value of: cot^(-1)(sqrt(3))