Home
Class 12
MATHS
Prove thatsin^(-1)x=cos^(-1) sqrt(1-x^2)...

Prove that`sin^(-1)x=cos^(-1) sqrt(1-x^2)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|48 Videos
  • LIMITS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|49 Videos

Similar Questions

Explore conceptually related problems

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2)

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))