Home
Class 12
MATHS
If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi...

If `tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi`, prove that `x + y + z = xyz`.

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|48 Videos
  • LIMITS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|49 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .