Home
Class 12
MATHS
Find the following limits : lim(xrarr1...

Find the following limits :
`lim_(xrarr1) {(x^(1/5)-1)/(x^(1/100)-1)}`

Text Solution

Verified by Experts

`lim_(xrarr1) {(x^(1/5)-1)/(x^(1/100)-1)}`
Let ``x^(1/100)= t implies x^(1/5)= t^20` and as `x rarr 1 implies t rarr 1`
Then `lim_(xrarr1){(x^(1/5)-1)/(x^(1/100)-1)}`
`= lim_(xrarr1){(t^20-1)/(t-1)} = 20.1^(20-1)=20`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos
  • LOGARITHM

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|29 Videos

Similar Questions

Explore conceptually related problems

Find the following limits : lim_(xrarr3) (x^2+x+1)

Find the following limits : lim_(xrarr0) {{(x+1)^5-1}/x}

Find the following limits : lim_(xrarr0) {(sqrt(1+x)-1)/x}

Evaluate the following limits : lim_(x rarr 1) (x^(1/20)-1)/(x^(1/40)-1)

Find the following limits : lim_(xrarr2) {(x-1)(x^2-x+1)}

Find the following limits : lim_(xrarr4) {(x-1)(x-2)(x-3)}

Evalute lim_(xrarr1) (x^(15)-1)/(x^(10)-1)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

Evaluate the following limits: lim_(xrarr1)((x^(n)-1)/(x-1))

Evaluate the following limits: lim_(xrarr1)((x^(3)-x)/(x-1))