Home
Class 12
MATHS
int(3x sqrtx +4 sqrtx+5) dx=...

`int(3x sqrtx +4 sqrtx+5) dx=`

A

`6/5 x^(5/2) -8/3 x^(3/2) +5x+c`

B

`6/5 x^(5/2)+8/3 x^(3/2)+5x+c`

C

`6/5 x^(5/2)+4/3x^(3/2)+5x+c`

D

`4/5 x^(5/2)+8/3 x^3/2 +5x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3x \sqrt{x} + 4 \sqrt{x} + 5) \, dx \), we will break it down step by step. ### Step 1: Rewrite the integrand First, we can rewrite the terms involving square roots in terms of exponents: - \( \sqrt{x} = x^{1/2} \) - Therefore, \( 3x \sqrt{x} = 3x^{1} \cdot x^{1/2} = 3x^{3/2} \) - And \( 4 \sqrt{x} = 4x^{1/2} \) Now we can rewrite the integral: \[ \int (3x^{3/2} + 4x^{1/2} + 5) \, dx \] ### Step 2: Separate the integral Using the property of integrals, we can separate the integral into three parts: \[ \int 3x^{3/2} \, dx + \int 4x^{1/2} \, dx + \int 5 \, dx \] ### Step 3: Integrate each term Now we will integrate each term separately using the formula \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \). 1. For \( \int 3x^{3/2} \, dx \): \[ = 3 \cdot \frac{x^{3/2 + 1}}{3/2 + 1} = 3 \cdot \frac{x^{5/2}}{5/2} = 3 \cdot \frac{2}{5} x^{5/2} = \frac{6}{5} x^{5/2} \] 2. For \( \int 4x^{1/2} \, dx \): \[ = 4 \cdot \frac{x^{1/2 + 1}}{1/2 + 1} = 4 \cdot \frac{x^{3/2}}{3/2} = 4 \cdot \frac{2}{3} x^{3/2} = \frac{8}{3} x^{3/2} \] 3. For \( \int 5 \, dx \): \[ = 5x \] ### Step 4: Combine the results Now we combine all the integrated terms: \[ \int (3x \sqrt{x} + 4 \sqrt{x} + 5) \, dx = \frac{6}{5} x^{5/2} + \frac{8}{3} x^{3/2} + 5x + C \] ### Final Answer Thus, the final answer is: \[ \int (3x \sqrt{x} + 4 \sqrt{x} + 5) \, dx = \frac{6}{5} x^{5/2} + \frac{8}{3} x^{3/2} + 5x + C \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int ( sqrtx + 1/sqrtx ) dx

int_2^3(x+sqrtx+1/sqrtx)dx=

int(sec sqrtx)/(sqrtx)dx=

inte^(sqrtx)dx

int (2)/(sqrtx-sqrt(x+3)) dx =….

int _(2) ^(7) (sqrtx)/( sqrtx + sqrt ( 9-x)) dx =

What is int (sin sqrtx)/(sqrtx) dx equal to ?

int ((1+sqrtx)^2)/sqrtx dx=

int(sqrt(1+sqrtx))/(sqrtx)dx=