Home
Class 12
MATHS
int(sqrtx+1/sqrtx)^2 dx=...

`int(sqrtx+1/sqrtx)^2 dx=`

A

`x^2/2 log x-2x +c`

B

`x^2/2 +log x+2x +c`

C

`x^2/2 - log x+2x+c`

D

`x^2/2 +logx+4x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 \, dx\), we will follow these steps: ### Step 1: Expand the integrand First, we expand the expression inside the integral: \[ \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = \left(\sqrt{x}\right)^2 + 2\left(\sqrt{x}\right)\left(\frac{1}{\sqrt{x}}\right) + \left(\frac{1}{\sqrt{x}}\right)^2 \] This simplifies to: \[ x + 2 + \frac{1}{x} \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int \left(x + 2 + \frac{1}{x}\right) \, dx \] ### Step 3: Integrate term by term Now we will integrate each term separately: 1. \(\int x \, dx = \frac{x^2}{2}\) 2. \(\int 2 \, dx = 2x\) 3. \(\int \frac{1}{x} \, dx = \ln |x|\) Putting it all together, we have: \[ \int \left(x + 2 + \frac{1}{x}\right) \, dx = \frac{x^2}{2} + 2x + \ln |x| + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 \, dx = \frac{x^2}{2} + 2x + \ln |x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int ( sqrtx + 1/sqrtx ) dx

int1/(sqrtx(1-sqrtx)dx=

int (sqrtx+1/sqrtx) dx , (x ne 0) =____

int(sec sqrtx)/(sqrtx)dx=

int(sqrtx)/(1+xsqrtx)dx-

int (cossqrtx)/(sqrtx)dx

int_2^3(x+sqrtx+1/sqrtx)dx=

What is int (sin sqrtx)/(sqrtx) dx equal to ?

int(1-cossqrtx)/(sqrtx)dx=

int(1)/(sqrt(1+sqrtx))dx=