Home
Class 12
MATHS
int(3x+1/x+4)dx=...

`int(3x+1/x+4)dx=`

A

`3/2 x^2 +log x+4x+c`

B

`3/2 x^3 +2 log x+4x +c`

C

`3/2 x^3+log x -4x +c`

D

`3/2 x^2 - log x+4x +c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \frac{3x + 1}{x + 4} \right) dx \), we will follow these steps: ### Step 1: Simplify the integrand We can separate the integrand into simpler parts. We can rewrite the expression as: \[ \frac{3x + 1}{x + 4} = \frac{3x + 12 - 11}{x + 4} = \frac{3(x + 4) - 11}{x + 4} = 3 - \frac{11}{x + 4} \] Thus, we can rewrite the integral: \[ \int \left( \frac{3x + 1}{x + 4} \right) dx = \int \left( 3 - \frac{11}{x + 4} \right) dx \] ### Step 2: Integrate each term Now we will integrate each term separately: 1. The integral of \( 3 \) is: \[ \int 3 \, dx = 3x \] 2. The integral of \( -\frac{11}{x + 4} \) is: \[ -11 \int \frac{1}{x + 4} \, dx = -11 \ln |x + 4| \] ### Step 3: Combine the results Now we combine the results of the integrals: \[ \int \left( 3 - \frac{11}{x + 4} \right) dx = 3x - 11 \ln |x + 4| + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \left( \frac{3x + 1}{x + 4} \right) dx = 3x - 11 \ln |x + 4| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

int 1/(3x+4) dx

Evaluate: int(3x)/(1+2x^4)dx

int_1^2(3x-4)dx=?

Evaluate int (3x)/(4x+1)dx

int (4e^(3x) +1)dx

int_-2^4(-3x+1)dx=?

int 3x^4+x^4 dx

int(3x)/(1+2x^(4))dx

(i) int (3x^2)/(x^6+1) dx (ii) int (3x)/(1+2x^4) dx

Evaluate: int(1)/(x^(4)+3x^(2)+1)dx