Home
Class 12
MATHS
int ((1+sqrtx)^2)/sqrtx dx=...

`int ((1+sqrtx)^2)/sqrtx dx=`

A

`2sqrtx+4x+2/3x^5/2+c`

B

`sqrtx+2x+2/3x^3/2+c`

C

`2sqrtx+2x+2/3 x^(3//2) +c`

D

`3sqrtx+2x+2/3 x^(3//2) +c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(1+\sqrt{x})^2}{\sqrt{x}} \, dx\), we will follow these steps: ### Step 1: Expand the integrand First, we need to expand the expression \((1+\sqrt{x})^2\): \[ (1+\sqrt{x})^2 = 1^2 + 2 \cdot 1 \cdot \sqrt{x} + (\sqrt{x})^2 = 1 + 2\sqrt{x} + x \] Now, we can rewrite the integral: \[ \int \frac{(1+\sqrt{x})^2}{\sqrt{x}} \, dx = \int \frac{1 + 2\sqrt{x} + x}{\sqrt{x}} \, dx \] ### Step 2: Simplify the integrand Next, we divide each term by \(\sqrt{x}\): \[ \int \left(\frac{1}{\sqrt{x}} + 2 + \sqrt{x}\right) \, dx \] ### Step 3: Rewrite the terms Now we can rewrite \(\frac{1}{\sqrt{x}}\) and \(\sqrt{x}\) using exponents: \[ \frac{1}{\sqrt{x}} = x^{-1/2} \quad \text{and} \quad \sqrt{x} = x^{1/2} \] Thus, the integral becomes: \[ \int \left(x^{-1/2} + 2 + x^{1/2}\right) \, dx \] ### Step 4: Integrate term by term Now we can integrate each term separately: 1. \(\int x^{-1/2} \, dx = \frac{x^{1/2}}{1/2} = 2x^{1/2}\) 2. \(\int 2 \, dx = 2x\) 3. \(\int x^{1/2} \, dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2}\) Putting it all together, we have: \[ \int \left(x^{-1/2} + 2 + x^{1/2}\right) \, dx = 2x^{1/2} + 2x + \frac{2}{3} x^{3/2} + C \] ### Step 5: Write the final answer Thus, the final answer is: \[ \int \frac{(1+\sqrt{x})^2}{\sqrt{x}} \, dx = 2\sqrt{x} + 2x + \frac{2}{3} x^{3/2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1+sqrtx))/(sqrtx)dx=

int(1-cossqrtx)/(sqrtx)dx=

int(sec sqrtx)/(sqrtx)dx=

What is int (sin sqrtx)/(sqrtx) dx equal to ?

Evaluate : int ( sqrtx + 1/sqrtx ) dx

int (cossqrtx)/(sqrtx)dx

inte^(sqrtx)dx

(8) int(1/(sqrtx)-sqrtx)dx

int((7-3sqrtx)^(5//2))/(sqrtx)dx=