Home
Class 12
MATHS
int e^x sin(e^x) dx=...

`int e^x sin(e^x) dx=`

A

`cos(e^x)+c`

B

`cos(e^x)+c`

C

`sin(e^x)+c`

D

`-sin (e^x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \sin(e^x) \, dx \), we can use the substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = e^x \). Then, the differential \( dt \) can be expressed as: \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} = \frac{dt}{t} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ \int e^x \sin(e^x) \, dx = \int t \sin(t) \cdot \frac{dt}{t} = \int \sin(t) \, dt \] ### Step 3: Integrate The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) + C \] ### Step 4: Substitute Back Now we substitute back \( t = e^x \): \[ -\cos(t) + C = -\cos(e^x) + C \] ### Final Answer Thus, the final answer is: \[ \int e^x \sin(e^x) \, dx = -\cos(e^x) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

int e^(2x) sin x dx

int e^x sec e^x dx

int e^x sin 2x dx

Integrate: int e^x sin^2 x dx.

Integrate : int e^x sin x dx.

int e^(x) sin x dx .

int e^x/(e^x+3)dx

int e^(x)sec e^(x)dx

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

Evaluate: int e^(sin^(-1)x)dx