Home
Class 12
MATHS
int kf(x)dx=...

`int kf(x)dx=`

A

`k int f(x) dx`

B

`k+ int f(x) dx`

C

`1/k int f(x) dx`

D

`int f(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int k f(x) \, dx \), we can follow these steps: ### Step 1: Identify the constant In the given integral, \( k \) is a constant. ### Step 2: Use the property of integrals According to the properties of integrals, a constant can be factored out of the integral. Therefore, we can rewrite the integral as: \[ \int k f(x) \, dx = k \int f(x) \, dx \] ### Step 3: Write the final expression Thus, the final expression for the integral is: \[ \int k f(x) \, dx = k \int f(x) \, dx \] This shows that the integral of a constant multiplied by a function is equal to the constant multiplied by the integral of the function. ### Final Answer \[ \int k f(x) \, dx = k \int f(x) \, dx \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

int x^(x)dx

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If int f(x)dx=psi(x), then int x^(5)f(x^(3))dx

int{f(x)+-g(x)}dx=int f(x)dx+-int g(x)dx

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

int x/(b+x)dx

If u and v are two functions of x then prove that : int uv dx = u int v dx - int [ (du)/(dx) int v dx ] dx Hence, evaluate int x e^(x) dx

int_0^(2a)f(x)dx is equal to 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx