Home
Class 12
MATHS
Evaluate:int(2x^2-3 sinx+5sqrtx)dx...

Evaluate:`int(2x^2-3 sinx+5sqrtx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int (2x^2 - 3 \sin x + 5 \sqrt{x}) \, dx \), we can break it down into separate integrals. Here’s the step-by-step solution: ### Step 1: Break down the integral We can separate the integral into three parts: \[ \int (2x^2 - 3 \sin x + 5 \sqrt{x}) \, dx = \int 2x^2 \, dx - \int 3 \sin x \, dx + \int 5 \sqrt{x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|115 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x-sinx)^(3/2)/sqrt(x){(6x^2sin^2(x/2))/(x-sinx)+3x}dx

Evaluate int dx/(2x-3)^5

Evaluate : int ( sqrtx + 1/sqrtx ) dx

Evaluate: inte^(2x)\ (-sinx+2cosx)\ dx

Evaluate: int1/((2sinx+3cosx)^2)\ dx

int(3x sqrtx +4 sqrtx+5) dx=

Evaluate : int dx/ ( x sqrtx )

" Evaluate ":int(x+3)/(x^(2)-2x-5)dx

Evaluate int(x^(2)+5)^(3)dx