Home
Class 12
MATHS
Choose the correct answer of the given q...

Choose the correct answer of the given question
`int 1/(1+tanx) dx = ___ +c`

A

log |sexc-tanx|

B

` 2sec^2 x/2`

C

log|x+sinx|

D

1/2[x+log|sinx+cosx|]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{1 + \tan x} \, dx \), we will use substitution and partial fractions. Here’s a step-by-step solution: ### Step 1: Substitution Let \( z = \tan x \). Then, the differential \( dz \) is given by: \[ dz = \sec^2 x \, dx \] Since \( \sec^2 x = 1 + \tan^2 x = 1 + z^2 \), we can express \( dx \) as: \[ dx = \frac{dz}{1 + z^2} \] ### Step 2: Rewrite the Integral Substituting \( z \) into the integral, we have: \[ \int \frac{1}{1 + \tan x} \, dx = \int \frac{1}{1 + z} \cdot \frac{dz}{1 + z^2} \] This simplifies to: \[ \int \frac{dz}{(1 + z)(1 + z^2)} \] ### Step 3: Partial Fraction Decomposition We can decompose the integrand using partial fractions: \[ \frac{1}{(1 + z)(1 + z^2)} = \frac{A}{1 + z} + \frac{Bz + C}{1 + z^2} \] Multiplying through by the denominator \( (1 + z)(1 + z^2) \) gives: \[ 1 = A(1 + z^2) + (Bz + C)(1 + z) \] Expanding this, we get: \[ 1 = A + Az^2 + Bz + Bz^2 + C + Cz \] Combining like terms: \[ 1 = (A + B)z^2 + (B + C)z + (A + C) \] Setting coefficients equal, we have: 1. \( A + B = 0 \) 2. \( B + C = 0 \) 3. \( A + C = 1 \) ### Step 4: Solve for A, B, and C From \( A + B = 0 \), we have \( B = -A \). From \( B + C = 0 \), substituting \( B \) gives \( -A + C = 0 \) or \( C = A \). Substituting \( C \) into \( A + C = 1 \) gives: \[ A + A = 1 \implies 2A = 1 \implies A = \frac{1}{2} \] Thus, \( B = -\frac{1}{2} \) and \( C = \frac{1}{2} \). ### Step 5: Rewrite the Integral Now, substituting back into the integral: \[ \int \left( \frac{1/2}{1 + z} + \frac{-1/2 z + 1/2}{1 + z^2} \right) dz \] This becomes: \[ \frac{1}{2} \int \frac{1}{1 + z} \, dz - \frac{1}{2} \int \frac{z}{1 + z^2} \, dz + \frac{1}{2} \int \frac{1}{1 + z^2} \, dz \] ### Step 6: Solve Each Integral 1. \( \int \frac{1}{1 + z} \, dz = \ln |1 + z| \) 2. For \( \int \frac{z}{1 + z^2} \, dz \), use substitution \( u = 1 + z^2 \) which gives \( \frac{1}{2} \ln |1 + z^2| \). 3. \( \int \frac{1}{1 + z^2} \, dz = \tan^{-1}(z) \) Putting it all together: \[ \frac{1}{2} \ln |1 + z| - \frac{1}{4} \ln |1 + z^2| + \frac{1}{2} \tan^{-1}(z) + C \] ### Step 7: Substitute Back Substituting \( z = \tan x \): \[ = \frac{1}{2} \ln |1 + \tan x| - \frac{1}{4} \ln |1 + \tan^2 x| + \frac{1}{2} \tan^{-1}(\tan x) + C \] Since \( \tan^{-1}(\tan x) = x \): \[ = \frac{1}{2} \ln |1 + \tan x| - \frac{1}{4} \ln |\sec^2 x| + \frac{1}{2} x + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{1 + \tan x} \, dx = \frac{1}{2} \ln |1 + \tan x| - \frac{1}{4} \ln |\sec^2 x| + \frac{1}{2} x + C \]
Promotional Banner

Topper's Solved these Questions

  • MATRIX

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|46 Videos
  • PARTIAL FRACTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|10 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer of the given question int (1-x^4)/(1-x) dx = ___ +c

Choose the correct answer of the given question int 2/(1-cos2x) dx =

Choose the correct answer of the given question int e^(sqrtx) dx = ___ +c

Choose the correct answer of the given question int (e^x+1)/(e^x-1) dx = ___ +c

Choose the correct answer of the given question int 1/(x(logx)^n) dx = ____+c

Choose the correct answer of the given question int e^x(1/x-1/x^2)dx =

Choose the correct answer of the given question int dx/(1+x^2) = ___ +c

Choose the correct answer of the given question int 2^x dx = ___ +c