Home
Class 12
MATHS
Choose the correct answer of the given q...

Choose the correct answer of the given question
`int (e^x+1)/(e^x-1) dx = ___ +c`

A

`2log|e^(x/2)-e^(-x/2)|`

B

`2log|e^(x/2)+e^(-x/2)|`

C

`2log|e^x-1|-x`

D

`2log|e^x+1|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{e^x + 1}{e^x - 1} \, dx\), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting the integrand: \[ \frac{e^x + 1}{e^x - 1} = \frac{(e^x - 1) + 2}{e^x - 1} = 1 + \frac{2}{e^x - 1} \] Thus, we can express the integral as: \[ \int \frac{e^x + 1}{e^x - 1} \, dx = \int \left(1 + \frac{2}{e^x - 1}\right) \, dx \] ### Step 2: Separate the integral Now we can separate the integral into two parts: \[ \int \left(1 + \frac{2}{e^x - 1}\right) \, dx = \int 1 \, dx + 2 \int \frac{1}{e^x - 1} \, dx \] ### Step 3: Integrate the first part The integral of 1 is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second part Now we need to focus on the integral \( \int \frac{1}{e^x - 1} \, dx \). We can use substitution for this integral. Let: \[ u = e^x - 1 \quad \Rightarrow \quad du = e^x \, dx \quad \Rightarrow \quad dx = \frac{du}{u + 1} \] Thus, we rewrite the integral: \[ \int \frac{1}{u} \cdot \frac{du}{u + 1} \] This integral can be solved using partial fractions: \[ \frac{1}{u(u + 1)} = \frac{A}{u} + \frac{B}{u + 1} \] Multiplying through by \(u(u + 1)\) and solving for \(A\) and \(B\), we find: \[ 1 = A(u + 1) + Bu \quad \Rightarrow \quad 1 = (A + B)u + A \] Setting coefficients equal gives: 1. \(A + B = 0\) 2. \(A = 1\) Thus, \(A = 1\) and \(B = -1\). Therefore: \[ \int \frac{1}{u(u + 1)} \, du = \int \left(\frac{1}{u} - \frac{1}{u + 1}\right) \, du = \log |u| - \log |u + 1| + C \] Substituting back \(u = e^x - 1\): \[ \int \frac{1}{e^x - 1} \, dx = \log |e^x - 1| - \log |e^x| + C = \log \left|\frac{e^x - 1}{e^x}\right| + C \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int \frac{e^x + 1}{e^x - 1} \, dx = x + 2\left(\log \left|\frac{e^x - 1}{e^x}\right| + C\right) \] This simplifies to: \[ x + 2\log |e^x - 1| - 2\log |e^x| + C \] Thus, the final result can be expressed as: \[ x + 2\log |e^x - 1| - 2x + C = -x + 2\log |e^x - 1| + C \] ### Final Answer: \[ \int \frac{e^x + 1}{e^x - 1} \, dx = -x + 2\log |e^x - 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • MATRIX

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|46 Videos
  • PARTIAL FRACTIONS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|10 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer of the given question int e^x(1/x-1/x^2)dx =

Choose the correct answer of the given question int (1-x^4)/(1-x) dx = ___ +c

Choose the correct answer of the given question int e^(sqrtx) dx = ___ +c

Choose the correct answer of the given question int 2^x dx = ___ +c

Choose the correct answer of the given question int 1/(x(logx)^n) dx = ____+c

Choose the correct answer of the given question int 1/(1+tanx) dx = ___ +c

Choose the correct answer of the given question int dx/(1+x^2) = ___ +c

Choose the correct answer of the given question int 2/(1-cos2x) dx =

int(e^(2x)+1)/(e^(2x)-1)dx=