Home
Class 12
MATHS
If a, b and c are distinct reals and the...

If a, b and c are distinct reals and the determinant `|{:(a ^(3) +1, a ^(2) , a ),( b ^(3) +1, b ^(2) , b ),( c ^(3) +1, c ^(2), c):}|= 0,` then the product abc is

A

`-1`

B

0

C

1

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If the product abc =1, then the value of the determinant |{:( -a ^(2), ab, ac),( ba, -b ^(2), bc),(ac, bc,-c ^(2)):}| is

The value of the determinant |(bc,ca,ab),(a^(3),b^(3),c^(3)),((1)/(a),(1)/(b),(1)/(c))| is

Find the value of the determinant |[1, a, b+c],[ 1, b, c+a],[ 1, c, a+b]|

If b ne c and |[a , a^2, 1+a^3],[ b, b^2, 1+b^3],[ c, c^2, 1+ c^3]| =0 then prove that a b c =-1

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

prove |[1, b c, a(b+c)],[ 1, c a, b(c+a)],[ 1, a b, c(a+b)]|=0

If a,b, and c are non - zero real numbers, then Delta=|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b)| is equal to a) abc b) a^(2)b^(2)c^(2) c)bc+ca+ab d)None of these