Home
Class 12
MATHS
The complex number sqrt2 [ sin "" (pi)/(...

The complex number `sqrt2 [ sin "" (pi)/(8) + i cos ""(pi)/(8) ] ^(6)` represents

A

a) `-i`

B

b) `i`

C

c) `1-i`

D

d) `1 +i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [ cos ""(pi)/(8) + isin ""(pi)/(8) ]^(4) is

The principal argument of the complex number z = (1+ sin""(pi)/(3) + icos""(pi)/(3))/(1+sin""(pi)/(3) - i cos ""(pi)/(3)) is

The argument of the complex number "sin"(6pi)/(5)+ i(1+"cos" (6pi)/(5)) is

The real part of [1 + cos ((pi )/(5)) + i sin ((pi)/(5)) ]^(-1) is :

Represent the complex number sqrt3+i in the polar form.

The argument of the complex number ((i)/(2) - (2)/(i)) is equal to a) (pi)/(4) b) (3 pi)/(4) c) (pi)/(12) d) (pi)/(2)

Represent the complex number 1+sqrt3i in the polar form.

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to

Show that sin ((pi)/(2)-x)=cos x

The value of sin^(2)""(pi)/(8) + sin^(2)""(3pi)/(8) + sin^(2)""(5pi)/(8) + sin^(2) ""(7pi)/(8) is equal to a) (1)/(8) b) (1)/(4) c) (1)/(2) d)2