Home
Class 12
MATHS
The value of tan [sin ^(-1) "" (-1)/(sqr...

The value of tan `[sin ^(-1) "" (-1)/(sqrt2)]` is

A

`-1`

B

0

C

1

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan [ sin ^(-1) "" (5)/(13) + cot ^(-1) ""(4)/(3)] is

The value of tan^(-1)[2 cos(2sin^(-1)""(1)/(2)) is

The principal value of sin ^(-1) (- (sqrt2)/(2)) is

The value of sin ^(-1) ((2 sqrt2)/( 3)) + sin ^(-1) (( 1)/(3)) is equal to

Evaluate int tan (sin ^(-1) x)/(sqrt(1-x^2)) d x

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))

If sin4A-cos2A=cos4A-sin2A,(0ltAlt(pi)/(4)), then the value of tan4A is a)1 b) (1)/(sqrt(3)) c) sqrt(3) d) (sqrt(3)-1)/(sqrt(3)+1)

Find the principal values of the following cos ^(-1)(-1/sqrt2)

Find the value of tan^(-1)[2 cos(2sin^(-1)frac(1)(2) )]

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)