Home
Class 12
MATHS
The value of lim (x to 0) ( x ^(3) sin (...

The value of `lim _(x to 0) ( x ^(3) sin ((1)/(x)) - 2 x ^(2))/( 1 + 3x ^(2))` is

A

a) 0

B

b) `1/3`

C

c) `-1`

D

d) `(-2)/(3)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = sin x - cos x. Then the value of lim _( x to pi/2) ""(f (x)- f ((pi)/(2)))/(x - (pi)/(2)) is

Evalute lim_(xrarr0)(sin 4x)/(3x)

Evaluate: lim_(x rarr 0) (sin 2x + sin 6x)/(sin 5x - sin 3x)

lim_(x rarr oo)((x^(3))/(3x^(2) - 4) - (x^(2))/(3x+2)) is equal to

Evaluate lim_(x rarr 2) (x^3 - 4)/(sqrt(3x -2) - sqrt(x+2))

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

If f (x)= int _(1) ^(x) sin ^(2) ((t)/(2)) dt, then the value of lim _(x to 0) (f (pi +x ) -f (pi))/(x) is equal to

Evaluate lim_(xrarr0)(sin5x)/(sin3x)