Home
Class 12
MATHS
The foci of the hyperbola (x ^(2))/( co...

The foci of the hyperbola `(x ^(2))/( cos ^(2) alpha ) -( y ^(2))/( sin ^(2) alpha ) = 1 ` are

A

`(pm 1, 0)`

B

`(pm alpha, 0)`

C

`(0, pm1)`

D

`(0, pm alpha)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

One of the foci of the hyperbola (x ^(2))/( 16) - (y ^(2))/(9) =1 is

The line x cos alpha + y sin alpha = p touches the hyperbola (x ^(2))/( a ^(2)) - (y ^(2))/( b ^(2))= 1 , if :

If sin^(16) alpha = (1)/(5) , then the value of (1)/( cos^(2) alpha) + (1)/( 1 + sin^(2) alpha) + (2)/( 1 + sin^(4) alpha) + (4)/( 1 + sin^(8) alpha) is

The length of the transverse axis of a hyperbola is 2 cos alpha. The foci of the hyperbola are the same as that of the ellipse 9x ^(2) + 16y ^(2) = 144. Find the equation of the hyperbola

If (cos^4 alpha)/(cos^2beta)+(sin^4alpha)/(sin^2beta)=1 ,then prove that (cos^4beta)/(cos^2alpha)+(sin^4beta)/(sin^2alpha)=1