Home
Class 12
MATHS
One of the foci of the hyperbola (x ^(2...

One of the foci of the hyperbola `(x ^(2))/( 16) - (y ^(2))/(9) =1 ` is

A

`(3,0)`

B

`(4,0)`

C

`(5,0)`

D

`(9,0)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If the length of the latusrectum and the length of transverse axis of a hyperbola are 4 sqrt3 and 2 sqrt3 respectively, then the equation of the hyperbola is a) (x ^(2))/( 3) - (y ^(2))/(4) =4 b) (x ^(2))/(3) - (y ^(2))/(6) =1 c) (x ^(2))/( 6) - (y ^(2))/(9) =1 d) (x ^(2))/( 6) - (y ^(2))/(3) =1

The foci of the hyperbola (x ^(2))/( cos ^(2) alpha ) -( y ^(2))/( sin ^(2) alpha ) = 1 are

The distance between the foci of the ellipse ((x +2) ^(2) )/(9 ) + (( y -1) ^(2))/(4)=1 is

The line x cos alpha + y sin alpha = p touches the hyperbola (x ^(2))/( a ^(2)) - (y ^(2))/( b ^(2))= 1 , if :

The eccentricity of the ellipse (x^(2))/(36 ) + (y^(2))/(16) =1 is

Suppose S and S' are foci of the ellipse (x^(2))/(25) + (y^(2))/(16)= 1. If P is a variable point on the ellipse and if Delta is area of the triangle PSS' , then the maximum value of Delta is :

Determine the eccentricity and length of latus rectum of the hyperbola x^2/16-y^2/9=1

If the foci of the ellips (x^(2))/(9)+(y^(2))/(16)=1 are (0,sqrt(7))and(0,-sqrt(7)) , then the foci of the ellipse (x^(2))/(9+t^(2))+(y^(2))/(16+t^(2))=1,t in R , are-

The foci of the ellipse (x^(2))/(16) + (y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144) - (y^(2))/(81) =(1)/(25) coincide. Then the value of b^(2) is : a)1 b)5 c)7 d)9