Home
Class 12
MATHS
If the circles x ^(2) + y ^(2) - 8x - 6y...

If the circles `x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0` cut orthogonally, then c + d equals

A

6

B

4

C

2

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is

If the circles x^(2) +y^(2) + ax -6y + 4 =0 and x^(2) + y^(2) - 12x + 32 =0 touch externally each other and if the distance between the centres is equal to 5, then the values of a are

The circle x ^(2) + y ^(2) + 8y - 4=0, cuts the real circle x ^(2) + y ^(2) + gx + 4=0 orthogonally, if g is :

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

Length of the tangents from the point (1,2) to the circles x^(2)+y^(2)+x+y-4=0 and 3x^(2)+3y^(2)-x-y-k=0 are in the ratio 4:3 , then k is equal to a) (37)/(2) b) (4)/(37) c)21 d) (39)/(4)

If 4x^(2) +py^(2) = 45 and x ^(2) - 4y^(2) = 5 cut orthogonally , then the value of p is : a) (1)/(9) b) (1)/(3) c)3 d)9