Home
Class 12
MATHS
If the product abc =1, then the value of...

If the product abc =1, then the value of the determinant `|{:( -a ^(2), ab, ac),( ba, -b ^(2), bc),(ac, bc,-c ^(2)):}|` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(bc,ca,ab),(a^(3),b^(3),c^(3)),((1)/(a),(1)/(b),(1)/(c))| is

If a, b and c are distinct reals and the determinant |{:(a ^(3) +1, a ^(2) , a ),( b ^(3) +1, b ^(2) , b ),( c ^(3) +1, c ^(2), c):}|= 0, then the product abc is

The value of determinant |(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2))| is a)always non -negative b)always non-positive c)always zero d)can't say anything

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

If ab gt -1, bc gt -1 and ca gt -1 , then the value of cot^(-1) ((ab+1)/(a-b) ) + cot^(-1) ((bc+1)/(b-c) ) + cot^(-1) ((ca+1)/( c-a)) is a) -1 b) cot^(-1) "" (a+b+c) c) cot^(-1) ("abc") d)0

If alpha, beta are the roots of the equation ax ^(2) + bx + c =0, then the value of (1)/( a alpha + b) + (1)/( a beta + b) equals to : a) (ac)/(b) b) 1 c) (ab)/(c) d) (b)/(ac)

By using the properties of determinants,prove that |[a^2+1,ab ,ac],[ab,b^2+1,bc],[ca ,cb,c^2+1]|=1+a^2+b^2+c^2

Prove that Prove that Delta=|(1,1,1),(a,b,c),(bc+a^(2),ac+b^(2),ab+c^(2))|=2(a-b)(b-c)(c-a)