Home
Class 12
MATHS
If tan ^(-1) x + 2 cot ^(-1) x = (pi)/(3...

If `tan ^(-1) x + 2 cot ^(-1) x = (pi)/(3),` then the value of x is

A

`-sqrt3`

B

`-sqrt2`

C

`sqrt2`

D

`sqrt3`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

If tan^(-1) (-x) + cos^(-1) ((-1)/(2)) = (pi)/(2) , then the value of x is

If tan^-1x=pi/10 ,then the value of cot^-1x is

If tan(cos^(-1)x)=sin(cot^(-1)""(1)/2) , then find the value of x.

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1)((1)/(2)) = 0 , then one of the values of x is equal to

If sin^(-1)(x-1)+cos^(-1)(x-3) +tan^(-1)(x/(2-x^2))= cos^(-1)k+pi then the value of k is A)1 B) -1/sqrt2 C) 1/sqrt2 D)None of these

If tan^(-1) ((x-1)/(x-2)) + tan^(-1) ((x+1)/(x+2)) = pi/4 . then find the value of x.

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5pi^(2))/(8) , then x is equal to a)0 b)2 c)1 d)-1