Home
Class 12
MATHS
The value of the integral int (0) ^((pi)...

The value of the integral `int _(0) ^((pi)/(2)) log theta d theta` is

A

0

B

1

C

`pi/2(log(pi/2)-1)`

D

`log 2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int _(0) ^(pi/2) (cos x )/( 1 + sin ^(2) x ) dx is

The value of the definite integral int _(0) ^(2pi) sqrt (1 + sin "" (x)/(2))dx is

The value of the integral int_(0)^(pi)log(1+cosx)dx is a) (pi)/(2)log2 b) -pilog2 c) pi log2 d)None of these

Evaluate the definite integral int_0^(pi / 2) cos 2 x d x

The value of the definite integral int_(0)^(pi//2)(sin5x)/(sinx)dx is

The value of int_(0)^(pi//2)sqrt((sin2theta))sinthetad theta is a) pi//2 b) pi//4 c) pi//8 d) pi//16

Evaluate int_0^(pi/2) log(tanx)dx

The value of theta in the range 0 lt= theta lt= (pi)/(2) which satisfies the equation sin ( theta +(pi)/(6)) = cos theta is equal to

The value of the integral int_(-pi)^(pi)sinmxsinnxdx for m!=n(m,n inI) is a)0 b) pi c) pi//2 d) 2pi