Home
Class 12
MATHS
int3x^(2)(x^(3)+1)^(10)dx=...

`int3x^(2)(x^(3)+1)^(10)dx=`

A

`((x^(3)+1)^(11))/(11)+C`

B

`((x^(3)+1)^(9))/(9)+C`

C

`((x^(3)+1)^(11))/(33)+C`

D

`((x^(3)+1)^(11))/(11)+x^(3)+C`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(2))/(1+(x^(3))^(2) dx is equal to

inte^(3logx)(x^(4)+1)^(-1)dx=

The value of int_(0)^(2) (x^(2))/((x^(3)+1)^(2)) dx is equal to

If y=int_(x^(2))^(x^(3))(1)/(logt) dt(where xgt0 ), then find (dy)/(dx) .

Evaluate the following int(x^(2)tan^(-1)x^(3))/(1+x^(6))dx

int(x^(5))/(sqrt(1+x^(3)))dx is equal to

If intf(x)dx=Psi(x) , then intx^(5)f(x^(3))dx is equal to a) 1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c b) 1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c c) 1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c d) 1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c

int_(-2)^(0)[x^(3)+3x^(2)+3x+(x+1)cos(x+1)]dx=

int(1+2x+3x^(2)+4x^(3)+ . . .)dx=