Home
Class 12
MATHS
int(0)^(pi/2)(1)/(1+cot^(4)x)dx=...

`int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`pi`

D

`(pi)/(8)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx is

Evaluate int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

If I_(1)=int_(0)^(pi//2)(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^(pi//2)(sin^(2)x)/(1+sin^(2)x)dx , I_(3)=int_(0)^(pi//2)(1+2cos^(2)x.sin^(2)x)/(4+2cos^(2)xsin^(2)x)dx , then

Find the following integrals. int_0^(pi/2)frac(sinx)(1+cos^2x)dx

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

If int_(0)^(1)cot^(-1)(1-x+x^(2))dx=lamdaint_(0)^(1)tan^(-1)xdx then 'lamda' is equal to