Home
Class 12
MATHS
The value of tan^(-1) ((7)/(4))- tan^(-1...

The value of `tan^(-1) ((7)/(4))- tan^(-1) ((3)/(11))` is equal to

A

`(-pi)/(3)`

B

`(-pi)/(4)`

C

`(pi)/(4)`

D

`(pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)((4)/(5)) + 2 tan^(-1)((1)/(3)) is equal to

tan ( 2 tan^(-1) ((2)/(5))) is equal to

The value of cos tan^(-1)(3/4) is

The value of tan^(-1) (2) + tan^(-1) (3) is equal to a) (3pi)/(4) b) (pi)/(4) c) (pi)/(3) d) tan^(-1) (6)

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

The value of sec [ tan ^(-1) ((b +a )/(b-a)) - tan ^(-1) ((a)/(b)) ] is A)2 B) sqrt2 C)4 D)1

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ] is equal to

The values of tan^-1(a/b)-tan^-1((a-b)/(a+b)) =?