Home
Class 12
MATHS
cos^(4) ""(pi)/(12) - sin^(4)"" (pi)/(1...

`cos^(4) ""(pi)/(12) - sin^(4)"" (pi)/(12)` is equal to

A

`(1)/(2)`

B

`(sqrt(3))/(2)`

C

`(sqrt(3)+1)/(2)`

D

`(sqrt(3)+1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(4)""(pi)/(8)+sin^(4)""(3pi)/(8) is equal to

The value of sin^(2)""(pi)/(8) + sin^(2)""(3pi)/(8) + sin^(2)""(5pi)/(8) + sin^(2) ""(7pi)/(8) is equal to a) (1)/(8) b) (1)/(4) c) (1)/(2) d)2

sin^-1[sin((7pi)/6)] is equal to --

((1+cos(pi/(12))+i sin ((pi)/(12)))/(1+cos (pi/(12))- i sin (pi/(12))))^(72) is equal to

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to

cos ^(-1) [ cos ((7pi)/(5))] is equal to

The value of sin^(-1)[ cos {cos^(-1)(cosx)+sin^(-1)(sinx)}] where "x"in (pi/2,pi) is equal to a) pi/2 b) -pi c) pi d) -pi/2

If sin ^(-1) ((5)/(x)) + sin ^(-1) ((12)/(x)) = (pi)/(2), then x is equal to: A) 7/13 B) 4/3 C) 13 D) 13/7