Home
Class 12
MATHS
If |veca| =2 , vecb =2 hati - hatj -3hat...

If `|veca| =2 , vecb =2 hati - hatj -3hatk` and the angel between `veca` and `vecb` is `(pi)/(4)` then `veca.vecb` is equal to

A

`14 sqrt(2)`

B

`2sqrt(7)`

C

`sqrt(30)`

D

`sqrt(7)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,veca+vecb are unit vectors, then prove that the angle between veca and vecb is (2pi)/(3)

If |veca|=2,|vecb|=3 and veca.vecb=4 , then |veca-vecb| is equal to

If absveca=2 , absvecb=3 and theta is the angle between veca and vecb . Then the maximum value of veca.vecb occurs when theta =.....a) pi/2 b) pi c)0 d) pi/4

If veca=2hati+2hatj+3hatk and vecb=2hati-hatj+hatk , then the value of (veca+vecb).(veca-vecb) is equal to

If veca=hati+hatj-hatk,vecb=2hati+3hatj+hatk and theta is the angle between them, then tantheta =