Home
Class 12
MATHS
int (1)/(e^(2x)-1)dx =...

`int (1)/(e^(2x)-1)dx `=

A

`2 log | e^(2x)-1| -x +C `

B

`x- (1)/(2) log |e^(2x)-1|+C`

C

`x+(1)/(2) log |e^(2x)-1| +C `

D

`(1)/(2) log |e^(2x)-1| -x +C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int(1)/(x^(2)-x+1)dx .

Evaluate int(1)/(1+e^(-x))dx .

int(1+x)/(x+e^(-x))dx is equal to

Evaluate int(e^(2x)-1)/(e^(2x)+1)dx .

Evaluate the following int(1)/(sqrt(1-e^(2x)))dx

int sqrt(e^(x)-1) dx is equal to :

int(e^(-x))/(1+e^(x))dx=

If int_(1)^(2)e^(x^(2))dx=a , then int_(e)^(e^(4))sqrt(lnx)dx is equal to

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

int(1)/(8 sin^(2)x + 1)dx is equal to