Home
Class 9
MATHS
prove: (2^n+2^(n-1))/(2^(n+1)-2^n)=3/2...

prove: `(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`

Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MODERN PUBLICATION|Exercise EXERCISE|232 Videos
  • MODEL TEST PAPER 1

    MODERN PUBLICATION|Exercise EXAMPLE|9 Videos
  • POLYNOMIALS

    MODERN PUBLICATION|Exercise EXERCISE|247 Videos

Similar Questions

Explore conceptually related problems

If A = [(1,1),(1,1)] , prove by induction that A^n = [(2^(n-1), 2^(n-1)), (2^(n-1), 2^(n-1))] for all natural numbers n.

Prove that : 7^(2n)+(2^(3n-3))(3^(n-1)) is divisible by 25 forall n in N .

If I_n=int x^nsqrt(a^2-x^2)dx, prove that I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)

Find the value of (3^n × 3^(2n + 1))/(3^(2n) × 3^(n - 1))

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that : cos A cos 2A cos 2^2 A cos 2^3 A........ cos 2^(n-1) A= (sin 2^n A)/(2^n sinA) .

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2))/((n+1)(n+2))