Home
Class 9
MATHS
The value of (sqrt32+sqrt48)/(sqrt8+sqrt...

The value of `(sqrt32+sqrt48)/(sqrt8+sqrt12)` is equal to

A

`sqrt2`

B

2

C

4

D

8

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MODERN PUBLICATION|Exercise EXERCISE|232 Videos
  • MODEL TEST PAPER 1

    MODERN PUBLICATION|Exercise EXAMPLE|9 Videos
  • POLYNOMIALS

    MODERN PUBLICATION|Exercise EXERCISE|247 Videos

Similar Questions

Explore conceptually related problems

1/(sqrt9-sqrt8) is equal to

2sqrt3+sqrt3 is equal to

The value of (2+sqrt(3))(2-sqrt(3)) is:

4sqrt(3sqrt2^2) equals

The value of tan^-1(sqrt3/2) + tan^-1(1/sqrt3) is equal to

Evaluate |(sqrt6,sqrt5),(sqrt20,sqrt24)|

The value of log_((8-3sqrt7))(8+3sqrt7) is

Find the Values of : (sqrt3+sqrt2)^3+(sqrt3-sqrt2)^3 .

If sqrt2=1.414, sqrt3=1.732 then find the value of 4/(3sqrt3-2sqrt2)+3/(3sqrt3+2sqrt2)