Home
Class 9
MATHS
(a+b)^2+(a-b)^2=…………....

`(a+b)^2+(a-b)^2`=………….

Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MODERN PUBLICATION|Exercise EXERCISE|247 Videos
  • NUMBER SYSTEMS

    MODERN PUBLICATION|Exercise EXERCISE|232 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise EXERCISE|45 Videos

Similar Questions

Explore conceptually related problems

Show that : (a+b)^2 - 4ab=(a-b)^2 .

If A is the A.M. between a and b, prove that : (A-a)^(2) +(A-b)^(2)=1/2(a-b)^(2) .

The blank space in (a-b)^2=a^2 -.......+b^2 is filled by

If cosec theta- sin theta= a^3, sec theta- cos theta= b^3 , prove that a^2b^2(a^2+b^2)=1 .

(5x + 2y) ( 5x - 2y) can be simplified using the identity. a. (x +b) ^(2) = a ^(2) + 2 ab + b ^(2) b. (x -b) ^(2) = a ^(2) - 2 ab + b ^(2) c. (a +b)(a -b) = a ^(2) - b ^(2) d. none

If (a , b) is the midpoint of a chord passing through the vertex of the parabola y^2=4x , then (a) a=2b (b) a^2=2b (c) a^2=2b (d) 2a=b^2

Area of the quadrilateral formed with the foci of the hyperbola x^2/a^2-y^2/b^2=1 and x^2/a^2-y^2/b^2=-1 (a) 4(a^2+b^2) (b) 2(a^2+b^2) (c) (a^2+b^2) (d) 1/2(a^2+b^2)

Verify : (a+b)(a-b) = a^2 -b^2 for a =4,b=2 and a=4,b=-2.

Verify: (a-b)^2=a^2-2ab+b^2 for a = 3,b=2 and a=3 ,b= -2.

(2a + 3b) (a – b) = 2a^2 – 3b^2